

A COMPREHENSIVE REVIEW OF BUSINESS INSIGHT AND INNOVATION: IMPACTS ON FIRM PERFORMANCE ACROSS INDUSTRIES**Dr. Abdul Hameed Qamar ¹, Hafiz Abdul Hai Asim ², Kashmir Khan ³****Affiliations:**

¹ Lecturer, Department of Education,
The Islamia University of
Bahawalpur, (Bahawalnagar Campus),
Punjab, Pakistan
Email: hameed.qamar@iub.edu.pk

² M.Phil. Management Science,
Principal, GHS Laleka, School
Education Department, Bahawalnagar,
Punjab, Pakistan
Email: asimawans786@gmail.com

³ M.Phil. Education, Department of
Education, The Islamia University of
Bahawalpur, (Bahawalnagar Campus),
Punjab, Pakistan
Email: kashmirkhanbwn@gmail.com

Corresponding Author/s Email:

¹ hameed.qamar@iub.edu.pk

Copyright:

Author/s

License:**Abstract**

This paper is a review of the linkage between business insight, innovation and firm performance in different industries that summarizes the existing literature in a number of theoretical perspectives including dynamic capabilities theory, resource-based view and contingency theory. It explores the role of business intelligence, data analytics, and innovation practices to enhance the best organizational performance in manufacturing, service, technology, and emerging industries. The review concludes that there are positive effects of innovation on firm performance consistently, but they are moderated by organizational capabilities, market conditions, and strategic alignment. Moreover, business wisdom and advanced analytics and artificial intelligence increase decision-making, creating competitive advantage in dynamic markets. The paper identifies key success variables, such as the contribution of organizational learning, agility, and leadership to the innovation efforts. It uncovers new research needs and emphasizes the necessity of new studies on the impact of environmental factors and industry conditions on the results of innovation. The results underline the idea that the organizations should create integrated competencies to leverage the business insights and introduce innovations to maintain the long-term performance. The future research directions are to investigate the nexus of business insight and digital transformation and how sustainability-focused innovation affects firm resilience and the value creation to the stakeholders. The current review will add to the better understanding of how innovation and business insight are converted into the real performance improvements within industries.

Keywords: Business Insight, Innovation, Firm Performance, Organizational Capabilities, Dynamic Capabilities, Cross-Industry Analysis.

Introduction

The modern business environment has been characterized by unprecedented competitive forces, technological subversion, and fast changing market needs. The skill to create, process, and take actions on business insights in the quest to innovate has become core to organizational survival and success in this environment (Al-Okaily et al., 2023; Eboigbe et al., 2023). Business insight refers to the strategic knowledge of the market forces, competitive positioning, and operational efficiency based on data analytics, business intelligence systems, and market intelligence (Al-Okaily et al., 2023). Innovation, in turn, can be defined as the launch of new products, procedures, organization practices, or business models that can benefit the stakeholders (Farooq et al., 2021; Oduro & Nisco, 2023).

Although decades of studies have investigated relationships between innovation and performance, results have shown great heterogeneity with regard to industries, firms, and time. These relationships have been made more complex with the introduction of business intelligence and data analytics into the innovation

process, which has added more variables that have an impact on organizational performance (Eboigbe et al., 2023). Additionally, market turbulence, competition intensity, and technological change can be viewed as environmental factors that moderate the strength and nature of the innovation-performance relationships (Clauss et al., 2019; Turulja & Bajgori, 2018).

This is a general review aimed at a synthesis of existing information on the role of business insight and innovation in the performance of firms in various industries. The review will seek to give a combined picture of how organizations generate and retain competitive advantage in the dynamic markets by analyzing both direct and indirect routes through which these constructs affect the results.

Theoretical Foundations

Dynamic Capabilities Theory

The dynamic capabilities theory offers a theoretical basis of understanding how organizations feel, grab and convert resources in order to deliver high-performance in dynamic environments (Andreeva and Ritala, 2016; Bari et al., 2022). Dynamic capabilities denote the capability of an organization to reorganize internal and external capabilities to respond to the swiftly evolving business conditions (Pisano, 2017). This theory clarifies why certain organizations are able to utilize innovations successfully and others fail to do so stressing on the role of organizational routines and processes in converting opportunities into competitive advantages (Pisano, 2017).

Micro-foundations of dynamic capabilities, including sensing, seizing, and transforming, are directly connected to the business insight creation and the implementation of innovations (Yoshikuni et al., 2023). Sensing will entail the capacity to detect and identify opportunities or threats within the competitive environment using business intelligence systems and market research. Seizing is the ability of the organization to focus resources on the opportunities that have been identified, and transforming is the ability to restructure organizational resources and processes to gain long-term competitive advantage (Bari et al., 2022).

Recent empirical studies confirm the fact that big data and business analytics capabilities serve as an enabler of dynamic capabilities, which allows organizations to sense the market opportunities, capture them by being innovative, and transform organizational structures to remain relevant (Yoshikuni et al., 2023). Organizations that have a high dynamic capability in competitive environments that are technologically turbulent result in high innovation performance scores (Puriwat & Hoonsoon, 2021).

Resource-Based View and Competitive Advantage

Resource-based view (RBV) of the firm offers a complementary theoretical framework, which states that the persistent competitive advantage is based on heterogeneous, firm-specific resources and capabilities, which are rare, valuable, inimitable, and structured (VRIO criteria) (Nayak et al., 2022b, 2022a). In this context, business insight capabilities and innovation competencies are strategic resources that make successful firms stand out of competition.

Knowledge management skills, human capital, and organizational learning are the most important resources that enable them to create business insights and the successful utilization of the innovations (Torres et al., 2018). Companies that strategically invest in the building of these capabilities develop barriers to imitation and thus maintain performance advantages over longer periods (Gupta, 2020). Information systems-human resource practices-strategic leadership is a combination of complementary resources that increases the competitive advantage of any one resource (Gupta, 2020).

A study that considers both the RBV and the industrial organization approaches shows that competitive advantage is a result of the interplay between excellent resources and capabilities along with the advantageous market conditions (Nayak et al., 2022b). According to this convergence theory, business insight and innovation can generate a performance advantage in a two-fold process: the internal resource-building coupled with strategic positioning in attractive markets (Nayak et al., 2022b).

Contingency Theory and Environmental Moderators

The contingency theory assumes that the performance of any organization is determined by the right fit between organizational features, strategy, and environmental factors (Clauss et al., 2019). In the context of innovation and business insight, the contingency theory is used to predict that innovation investments and

performance results are related to environmental characteristics including market turbulence, competitive intensity, and technological change (Turulja & Bajgori, 2018).

Contingency propositions about the effectiveness of innovation are based on empirical evidence. Innovation-performance relationships are buffered by environmental turbulence, and several studies have found that product innovation leads to stronger performance payoffs in the stable environment, whereas process innovation proves to be more effective in turbulent environments (Turulja & Bajgori, 2018). Also, firm-specific factors, including size, industry situation, and strategic alignment, moderate the relationship between organizational investments in business intelligence and innovation and high performance (Clauss et al., 2019; Asif, 2022).

Business Insight and Intelligence: Conceptualization and Mechanisms

Defining Business Insight

Business insight is the ability of an organization to make sense of internal and external data and identify patterns and relationships that are not necessarily as apparent and then translate this knowledge into actionable strategic choices (Al-Okaily et al., 2023). Business insight is unlike raw data or information; it is the result of analytical processes that relate past trends with future consequences, thus facilitating predictive and prescriptive decisions (Eboigbe et al., 2023).

The development of business intelligence systems, which started out as the traditional descriptive analytics and shifted to the new levels of predictive and prescriptive analytics, has radically changed the essence and worth of business insight (Eboigbe et al., 2023). The systems of business intelligence that existed in the early years mainly allowed historical analysis and reporting; modern systems with artificial intelligence and machine learning can give future insights that predict the future of the market and the behavior of competitors (Eboigbe et al., 2023).

Business Intelligence Technologies and Organizational Value

Studies on the effectiveness of business intelligence technology indicate that there are complicated associations between the implementation of the system and organizational gains. One such predictor which proves especially important is the data quality in predicting the perceived organizational benefits of business intelligence systems (Al-Okaily et al., 2023). The quality of the information and the satisfaction of users in organizations that invest in data quality management are higher and lead to organizational gains in the form of better decision-making, operational efficiency, and strategic responsiveness (Al-Okaily et al., 2023).

The benefits of big data analytics are expected to greatly improve the competitive edge of the organizations in various industries (Ramadan et al., 2020). Organizations with strong big data analytics capacity, which is backed by the availability of data and strategic alignment, possess high innovation ability and sustainable competitive advantages (Ramadan et al., 2020). Nevertheless, these advantages demand additional organizational investments in infrastructure, talent development, and managerial practices (Mumtaz et al., 2023; Ramadan et al., 2020).

The combination of artificial intelligence and business intelligence systems is a new frontier in organizational analytics (Eboigbe et al., 2023). Business intelligence powered by AI allows the automatic identification of patterns, real-time decision support, and predictions that are not present with the help of the traditional analytics systems (Eboigbe et al., 2023). Companies that implement AI-based business intelligence systems state that the speed and accuracy of decision making have greatly improved, yet the challenge of implementing AI-based systems remains in data governance, algorithm transparency, and talent availability (Wamba-Taguimdje et al., 2020).

Business Insight capabilities and Digital transformation

Digital transformation projects have a root in transforming organizational strategies of creating and exploiting business insights (He & Su, 2022; Tsai and Su, 2022). Digital technologies can support gathering unprecedented amounts of real-time data on customer behavior, operational processes, and competitive dynamics and the analytical functions can transform these data into actionable insights (Tsai & Su, 2022).

Business model innovation and firm performance are affected by external digital transformation, such as the use of digital marketing channels, customer relationship management systems, and data analytics platforms (Ciacci and Penco, 2023). External digital transformation is also associated with business model

innovation through the mediation of big data analytics capabilities, indicating that the performance benefits of digital transformation are contingent on organizational investments in analytics infrastructure and talent development (Ciacci & Penco, 2023). The linkage between digital transformation investments and the business model innovation outcomes is mediated by environmental hostility (Ciacci & Penco, 2023). The influence of big data analytics abilities on business model innovation becomes more significant in hostile settings, where competition is intense and the pace of technological change is fast, which means that the nature of analytics investments becomes more vital as the level of competition grows (Ciacci & Penco, 2023).

Innovation: Forms, Drivers, and Performance Impacts

Innovation Typology and Dimensionality

Innovation comprises various organizational transformations both in the technological and non-technological field. Product innovation, the appearance of new products or significantly higher quality products, is contrasted with process innovation, the implementation of new methods of production or delivery (Phan, 2019; Tun et al., 2016). Organization innovation (introduction of new organizational practices or systems) and marketing innovation (introduction of new marketing strategies or methods) are other dimensions of innovation that determine organizational performance (Phan, 2019; Tun et al., 2016).

The connection between the types of innovation and the performance outcomes differs significantly in the industrial background (Tun et al., 2016). Process and organizational innovations show higher performance effects than product innovations in supporting industries and imply that operational efficiency and organizational learning are more likely to create competitive advantage in supporting industries than product differentiation (Tun et al., 2016). Product innovation in manufacturing industries is always associated with positive performance (Tun et al., 2016).

Innovation Orientation and Performance

Innovation orientation- the degree to which firms focus on innovation in strategy and culture- also exhibits uniform positive relations to firm performance in a variety of settings (Farooq et al., 2021). The relationship is valid in both manufacturing and service industries, and the effect sizes are moderate implying that innovation orientation is a performance driver and not a determinant of performance (Farooq et al., 2021). The size of firms mediates the relationship between innovation orientation and performance (Farooq et al., 2021). Although innovation orientation has a positive impact on performance in small and large firms, the degree of relationship varies depending on nature of operations of firms of various sizes. Economies of scale may result in performance benefits by large firms by encouraging innovation investment and may result in disproportionate competitive advantage by small firms through focused innovation strategies (Farooq et al., 2021; Pasha et al., 2019).

Green Innovation and a Sustainability-oriented Performance

The concept of green innovation, including the introduction of environmental improvements in the product, process, or organization system, has become a strategic imperative as the environmental pressure increases worldwide (Liu, 2023). A study on the effects of green innovation on the performance of firms shows that there are mediating and moderating effects on organizational capabilities and strategic commitments.

Green innovation in corporations lowers volatility and credit risk of firms and improves firm value and emission performance (Liu, 2023). These results reveal that green innovation can generate various stakeholder benefits other than environmental protection, such as risk prevention and increment of financial performance (Liu, 2023). The green dynamic capability, or the capacity to re-arrange organizational resources to improve the environment, mediates the relationships between green innovation and enterprise performance (Li, 2022). Companies that create green dynamic capabilities by integrating resources, organizational learning, and environmental awareness also have better performance results than those that introduce green innovations without developing a relevant capability (Li, 2022).

The effect of green innovation on performance is contingent on the organizational features and management commitment (RR et al., 2023). Green innovation produces both beneficial and meaningful impacts on product and process innovations, which in their turn have an impact on organizational and environmental performance (RR et al., 2023). Nevertheless, these advantages demand managerial dedication

to green practices and purposeful human resource policies that would allow employees to adopt green-oriented behaviors (RR et al., 2023).

Business Model Innovation and Strategic Innovation

Business Model Innovation as Strategic Renewal

Business model innovation redesigning the core mechanisms of how organizations generate and appropriate value is a unique strategic form of innovation that has significant performance consequences (Clauss et al., 2019; Guo et al., 2022). Business model innovations unlike product or process innovations that enhance the current business models fundamentally change the way organizations create value to the customers and generate economic returns (Guo et al., 2022).

Business model innovation adoption can be greatly predicted by strategic agility, especially when environmental turbulence is involved (Clauss et al., 2019). The ability to quickly identify environmental shifts and redistribution of resources makes organizations that are strategically agile (compared to less agile ones) embrace a wide range of types of business model innovation (value creation, value capture, and value proposition innovations) (Clauss et al., 2019). The correlation between strategic agility and the adoption of business model innovation is reinforced with the presence of environmental turbulence, which implies that uncertain and rapidly changing market conditions trigger the organizational motivation to redesign basic business models (Clauss et al., 2019).

Business Model Innovation Performance Results

The business model innovation performance depends on the type of innovation (Clauss et al., 2019). Value proposition innovation and value creation innovation have positive correlations with firm performance, whereas value capture innovation has negative correlations with performance (Clauss et al., 2019). This observation implies that innovations with core customer value-centric and operational efficiency improvement focus are more likely to improve performance, whereas those whose sole interest is to get extra value out of already existing value creation are likely to drive away customers or provoke competitors (Clauss et al., 2019).

The relationship between innovation ambidexterity and firm performance is mediated by business model ambidexterity the capacity to assume market-driven (exploitative) and innovation-driven (exploratory) business models (Liao et al., 2018). Companies that manage to combine market responsiveness with innovative ability by using a proper business model design perform better than those that focus on the market-driven approach or innovation-driven approach only (Liao et al., 2018).

Digital Business Model Innovation

The concept of digital transformation radically altering the way business models are designed and implemented, allowing new ways of value creation and interaction with customers (Bouwman et al., 2018). With the help of social media and big data, SMEs change business models to digital-native directions with a focus on direct customer relations and personalization based on data (Bouwman et al., 2018). This internal business model innovation driven by digital drivers is more likely to happen based on strategic and innovation-related internal incentives than external technology turbulence, indicating that companies engage in digital business model change actively when they realise the need to compete with rivals (Bouwman et al., 2018).

Cross-Industry Analysis of Innovation-Performance Relationships

Manufacturing Sector

There are positive innovations that are stable in manufacturing firms and their relationship with performance is realized in product, process, and organizational innovation dimensions (Tun et al., 2016). Process innovation in manufacturing scenarios, to enhance efficiency and quality in production, creates broad performance payoffs in the form of reduced costs and increased quality of production. Process innovation implementation is affected by organizational innovation, implying that organizational practices within an organization can promote effective process innovation (Tun et al., 2016).

A combination of industry 4.0 technologies and innovation ambidexterity affect the performance of manufacturing firms (Oduro & Nisco, 2023). The use of Industry 4.0 digital technology is directly proportional to financial and non-financial performance, and non-financial performance benefits (an increase in quality, flexibility, and sustainability) outweigh financial returns during the early stages of implementation (Oduro & Nisco, 2023). The effects of Industry 4.0 on the performance of firms are partially mediated by

innovation ambidexterity, and this implies that the effect of implementing digital technologies on performance will be contingent on the ability of the organization to effectively pursue both efficiency and innovation in parallel (Oduro & Nisco, 2023). Practices of lean supply chain management help in increasing the competitiveness of manufacturing firms by availing a mechanism to deal with technological uncertainty (GarciaBuendia et al., 2022; Ishfaq et al., 2022).

Service Sector

The relationships of innovation and performance in service sector organizations are slightly different in the manufacturing environment because of the inseparability of production and consumption, close customer participation, and the unmeasurable nature of output (Tassabehji et al., 2019). Sharing knowledge in service companies, and in creative and knowledge-intensive industries, in particular, impacts positive innovation performance (Tassabehji et al., 2019). Nevertheless, the mechanisms are not similar to manufacturing companies; knowledge gathering procedures seem especially crucial in SMEs, and knowledge donation has a limited performance effect (Tassabehji et al., 2019).

Service innovation as the empowerment of customers, including engaging them in product development and service design, contributes to improving the financial performance of service industries to a considerable extent (Berraies & Hamouda, 2018). There is an intermediary effect between customer empowerment and customer performance via exploitative innovation (improvement of existing services) and customer satisfaction, which implies that service firms can obtain performance gains in the form of service improvements based on customer insight and customer satisfaction enhancement (Berraies & Hamouda, 2018).

Digital-Native and Technology Industry

The nature of innovation-performance relationships experienced by digital start-ups and technology companies is unique because of the high rate of technological change, venture capital funding, and the availability of international markets. The mediation role of business model innovation quality and creation processes in the performance of digital start-ups is through the value proposition innovation (Guo et al., 2022). Start-ups that successfully transform customer value propositions into better business model designs and execution processes have better performance results than those with better value propositions but worse implementation mechanisms (Guo et al., 2022). The fit between the exploitative and the explorative innovation strategies and the market demand characteristics as the technology value proposition mediates the innovation performance relationships in digital settings (Guo et al., 2019). Explorative value propositions (radical innovation) enhance positive performance of innovation in dynamic and uncertain markets whereas exploitative value propositions (incremental innovation) show little or no performance improvement in high uncertainty markets (Guo et al., 2019).

Knowledge-Intensive and High-Tech Manufacturing

Simultaneously, high-tech companies that seek to undertake various innovation activities encounter coordination issues that demand ambidextrous organizational structures and competencies. Ambidexterity in technology innovation-exploration versus exploitation in the company innovation activity- has a considerable impact on the performance of companies, mediated by the ambidexterity of the business model (Liao et al., 2018). Companies that construct business model configurations that favor market-responsive and innovation-driven strategies have better performance than those that focus on either of the two types of business models (Liao et al., 2018).

Mediating and Moderating Mechanisms

Organizational Capabilities as Mediators

Dynamic capabilities are always seen to play the role of mediators between performance and innovation investments. Organizational learning competency intermediates between organizational innovation and firm performance (Farzaneh et al., 2020). Companies that focus on systematic learning, integration of knowledge and reconfiguration of capabilities have high innovation performance relative to those that adopt innovations without the respective capability development (Farzaneh et al., 2020).

The marketing dynamic capability mediates the relationships between customer knowledge management and innovation performance using knowledge management capabilities (Falasca et al., 2017).

Customer-driven innovation processes allow organizations to perform better in their innovation activities by systematically gathering and analyzing customer knowledge and implementing the knowledge in specific marketing and product development activities (Falasca et al., 2017).

There are relationships between green innovation and enterprise performance mediated by green dynamic capabilities (Li, 2022). The green dynamic capability has the ability to moderate the impact of the environment through resource integration capability, organizational learning capability, and environmental insight capability, which allows organizations to successfully transform green innovation investments into sustained performance gains (Li, 2022).

Environmental and Contextual Moderators

The relationship between innovation and performance is moderated by environmental turbulence in rather complex ways (Turulja & Bajgori, 2018). Product and process innovation show positive performance relations irrespective of the level of environmental turbulence though the relationship strength increases in turbulent conditions. Instead of moderating relationships as it was initially theorized, environmental turbulence heightens the relevance of innovation capability to sustainable competitive position (Aurangzeb & Asif, 2021; Turulja & Bajgori, 2018).

Market turbulence also balances the performance of dynamic marketing capabilities in converting customer knowledge to innovation performance (Falasca et al., 2017). When the organizational environment is highly turbulent, the capacity of the organization to dynamically apply marketing capabilities to customer-driven innovation is more important (Falasca et al., 2017).

The firm size is a very significant moderating variable that affects the innovation-performance links. The effects of innovative performance differ between large and small firms, which may be affected by the difference in resource-related, organizational-based, and competitive positioning (Farooq et al., 2021). Focused innovation strategies could be disproportionately competitive to small firms and economies of scale and resource diversity can enable large firms to support broad innovation portfolios (Farooq et al., 2021).

Organizational Structure and Design Moderators

Dimensions of organizational structure have a considerable impact on the relationship of innovative performances. Organizational innovation capacity is limited by formalization and direct supervision, whereas training programs increase the capacity of the organization to build innovation capabilities (Dekoulou & Trivellas, 2017). These results indicate that innovation through flexible organizational forms that enable employees to learn and be discretionary is more effective than inflexible, tightly controlled organizational structures (Dekoulou & Trivellas, 2017).

The ability to quickly adapt to changes in the environment, which is known as organizational agility, plays an important role in determining the results of product innovation (Puriwat & Hoonsopon, 2021). Organizational agility has stronger impacts on radical innovation performance, as compared to incremental innovation performance, which indicates that radical innovations need organizational flexibility and quick reallocations of resources (Puriwat & Hoonsopon, 2021). Technological turbulence fortifies the connection between organizational agility and radical and incremental innovation performance, meaning that the more quickly technology changes, the more valuable organizational flexibility will be (Puriwat & Hoonsopon, 2021).

Innovation Implementation, Strategy Integration, and Performance

Strategic Alignment and Implementation Quality

A strategic fit between innovation strategy and business strategy in general has a strong impact on the performance of innovation (Morabi et al., 2021). Organizational inertia is a significant impediment to the introduction of a business model and the adoption of open innovation (Morabi et al., 2021). Companies that have a strong organizational culture, have routines, and are resistant to changes find it difficult to apply innovations successfully, despite their innovation strategies being well planned (Morabi et al., 2021).

The combination of systematic risk management and strategic business model redesign leads to better performance outcomes through the mediation of business model innovation, indicating that organizations with systematic risk management and strategic business model redesign perform better (AlNimer et al., 2021). The

practices of risk management show that they have substantial impacts on business model innovation, and this has implications to financial and non-financial performance (AlNimer et al., 2021).

Success Factors and Implementation Barriers

Organizational issues prove to be the key factors when it comes to the success of implementation of innovation. The quality of implementation and processes of implementation define whether the innovations can lead to transforming the theoretical benefits into the real performance benefits (Guo et al., 2022). Companies that have better execution processes, project management skills, and change management behaviors have better innovation performance results (Guo et al., 2022).

Implementation of technology is associated with significant barriers in an organization such as knowledge, infrastructure constraints, and organizational resistance (Brunetti et al., 2020). Digital transformation cannot be successfully implemented without the coordination of activities on several organizational levels: the creation of organizational culture and employee expertise, the creation of relevant technological and information infrastructure, and the development of the ecosystem partnership supporting the formation of digital capabilities in the long term (Brunetti et al., 2020).

Integration and Process Management Cross-Functionally

The level of process management maturity determines the degree of business intelligence investment to organizational benefits (Vugec et al., 2020). Business intelligence and business process management projects need to be implemented in a coordinated manner using similar terminologies, methods, and communication between the technology gurus and the business executives. The process management maturity is an intermediary where the business intelligence gains in organizational performance (Vugec et al., 2020).

Industry 4.0, Emerging Technologies, and Performance

Industry 4.0 Technologies and Implementation

The technologies of Industry 4.0, including IoT, artificial intelligence, advanced analytics, and cyber-physical systems, radically transform the organization of manufacturing processes and business models. The direct effect of the implementation of Industry 4.0 technologies on organizations is the direct increase in financial and non-financial performance, and the sustainability and quality improvements are especially strong (Odoro & Nisco, 2023). Technology allows unprecedented levels of real-time operational visibility, predictive maintenance and sustained optimization capacity (Valkov et al., 2022).

Industry 4.0 is implemented due to strategic, operational, and environmental motivation and hindered by competitiveness and production fit (Mller et al., 2018). Organizations that consider the implementation of Industry 4.0 to be a strategic necessity that is dictated by customer needs and competitive positioning have more broad-based adoptions compared to organizations that regard technology implementation as an operational concern (Mller et al., 2018).

The size of an organization and firm characteristics moderate Industry 4.0 implementation and performance effects (Horvth & Szab, 2019). Multinational enterprises have more cost of implementation but have more organizational resources and global best practices than small and medium sized firms. Nevertheless, SMEs determine competitive advantages and implementation opportunities depending on their competitive positioning (Horvth & Szab, 2019).

Artificial Intelligence and Business Value

Artificial intelligence technologies contribute to the increase in the performance of firms along various organizational levels due to better automation, information processing, and decision-making (Wamba-Taguimdje et al., 2020). Companies that have launched AI-driven transformation initiatives note that they have generated considerable value to the business, yet the returns are concentrated around the application domains such as customer relationship optimization, operational automation, and predictive analytics (Wamba-Taguimdje et al., 2020).

The human resource management practices developed with the help of AI establish organizational capabilities that facilitate the competitive advantage due to improved recruitment, performance management, and talent development (Bhmer & Schinnenburg, 2023). Nevertheless, the aspects of job design, performance measurement, and data transparency still need to be implemented ambiguously, which needs careful management to avoid negative outcomes among employees (Bhmer & Schinnenburg, 2023).

Knowledge Management, Learning, and Innovation Performance

Knowledge Management Capabilities and Innovation

There are several ways in which knowledge management practices have direct impact on innovation performance. The degree of knowledge sharing, the efficacy of knowledge application, and organizational learning orientation all define innovation capability and performance (Idrees et al., 2022). Companies that strategically apply knowledge management strategies attain a high level of performance in terms of new product development as opposed to firms that apply innovations in the absence of associated knowledge management systems (Idrees et al., 2022).

The processes of knowledge collection seem to be especially important in the context of SMEs, whereas knowledge donation does not have many direct positive performance implications (Tassabehji et al., 2019). Such trends imply that systematic accumulation and formalization of organizational knowledge are both a precondition of innovation capability creation, and informal knowledge sharing will prove less important performance benefits unless incorporated into formal innovation efforts (Tassabehji et al., 2019).

Intellectual Capital and Innovation Performance

Intellectual capital, which includes human capital, structural capital, and relational capital, mediates the relations between organizational investments and innovation performance (Ashraf et al., 2023). Organizations that strategically invest in human capital development, knowledge system, and relationships with stakeholders perform better in the area of innovation than organizations that do not develop these intangible resources (Ashraf et al., 2023).

The association between the intellectual capital and the performance of firms is different among different firms and industry sectors. The differences between the effect of human capital on SMEs and large firms exist due to the resource constraints and organizational structures (Ashraf et al., 2023). Human capital development is directly related to profitability in SMEs, whereas relational capital has a positive impact on small and large firms by providing better relations with customers and market positioning (Ashraf et al., 2023).

Green Innovation, Sustainability, and Organizational Excellence

Green Innovation Implementation and Environmental Performance

The adoption of green innovation in the manufacturing industry exhibits regular positive relations with environmental and organizational performance (Lozano & Collazzo, 2021). Companies that follow an extensive strategy of green innovation, including design of products, process optimization, and practice benefits, can realize cost savings, waste, and environmental benefits (Lozano & Collazzo, 2021).

Green entrepreneurship orientation, the process of green innovation, and managerial environmental concern have a collective effect on the hotel industry performance (Momayez et al., 2023). Green innovation intermediates the connections between entrepreneurship orientation and environmental and organizational performance, which implies that the business development process based on entrepreneurship is converted into environmental benefits through a structured green innovation process (Momayez et al., 2023).

Sustainable Supply Chain and Circular Economy Innovation

Green supply chain management and environmental consciousness, as well as lean practices, have a considerable impact on organizational sustainability and competitiveness (J. Singh et al., 2020). The supply chain management is mediating between the implementation of the lean practice and organizational sustainability, and it is an integrative process that may allow the alignment of operational efficiency and environmental responsibility (J. Singh et al., 2020).

Circular economy operations, including waste treatment, reduction, and recycling, provide a better brand reputation and financial performance and contribute to the sustainability goals (Mazzucchelli et al., 2022). Circular economic practices are mediated by brand reputation in terms of financial performance, which suggests that environmental responsibility creates financial gains via better brand positioning and consumer preference (Mazzucchelli et al., 2022).

Performance in Human capital, Leadership and Innovation

Strategic Human Resource Management and Innovation

The practices used in human resource management have a great impact on the innovation capability of an organization in various ways. The strategic HRM practices are also associated with the firm capabilities

that allow the innovation by means of systematic attraction, development, and retention of talent (Moustaghfir et al., 2020). Organizations that match HRM practices with the innovation strategy provide the organizational environment that encourages entrepreneurial behavior, risk-taking, and constant learning (Moustaghfir et al., 2020).

In the case of digital startups, entrepreneurial self-efficacy and innovation capability have a direct and positive impact on the performance of the firm (Klongthong et al., 2020). Startup survival and growth depend on the founder's confidence in their entrepreneur capabilities, which is mediated by organizational innovation capability and strategic orientation (Klongthong et al., 2020).

Strategic Leadership and Decision-Making

Strategic leadership plays a major role in organizational innovation and performance by working in several ways such as help in the articulation of the vision, capability building, and deployment of strategic resources (A. Singh et al., 2023). Strategic leaders influence the priorities of organizations, organizational culture, and orientation towards its development capabilities, which is why organizations are able to effectively use innovations as an instrument of competitive advantage (A. Singh et al., 2023).

Practices of mindfulness and leadership development positively contribute to the organizational results, such as the employee engagement, technostress, and innovative behavior (Lim, 2022). Organizational mindfulness leads to leaders developing a supportive environment that promotes the wellbeing of employees, organizational learning, and innovation development capability (Lim, 2022).

Cross-Industry Performance Outcomes and Comparative Analysis

Performance Measurement and Metrics

Organizational performance captures various aspects that are not limited to the financial performance but also market performance, operational efficiency, and stakeholder satisfaction (Farooq et al., 2021). Innovation performance is measured by organizations using financial metrics (profitability, revenue growth), operational metrics (efficiency, quality), as well as strategic metrics (market share, competitive positioning) (Farooq et al., 2021).

ESG (Environmental, Social, Governance) variables determine the financial performance and returns on investors in various industries (Iazzolino et al., 2023). The level of environmental, social, and governance performance has a significant variation depending on the sector, and in certain industries, ESGs are more sensitive to certain dimensions than others (Iazzolino et al., 2023). These results show that any innovation and business approaches that produce ESG value yield financial returns, albeit at different scales depending on the industry setting (Iazzolino et al., 2023).

Firm Size and Industry Sector Effects

The relationship between organizational performance has shown a high level of variance in terms of firm size and industry. The patterns of innovation-performance of SMEs can differ significantly with large firms because they are characterized by the differences in resource limits, organizational flexibility, and competitive positioning (Mazur & Zaborek, 2016). Organizational culture that promotes innovation and open innovation practices are positively related to ROI and financial performance in SMEs, but there are only small direct impacts on new product sales measures (Mazur & Zaborek, 2016).

The context of innovation and performance is heavily moderated by the industry (Clauss et al., 2019; Oduro & Nisco, 2023). International companies that are in mature industries will have varying opportunities and limitations to innovation than those in emerging industries. The competitive positioning, customer expectations, and technological opportunity sets differ considerably in the industry context, creating heterogeneous innovation-performance relationships (Clauss et al., 2019).

Performance Improvement and Digital Transformation

Digital supply chain deployment boosts the performance of an organization in various ways such as better coordination, real-time visibility of information, and optimized logistics processes (Lee et al., 2022). The systematic adoption of digital supply chain technologies brings a higher performance of organizations than traditional approaches to supply chain implementation, but there are moderating impacts of organizational capabilities and change management practices on implementation success (Lee et al., 2022).

Emerging Trends and Future Research Directions

Artificial Intelligence and Advanced Analytics Integration

The business intelligence systems are becoming more integrated with artificial intelligence to provide sophisticated predictive and prescriptive analytics services (Eboigbe et al., 2023). This integration can help organizations to go beyond descriptive analytics to forward-looking decision support, but there is still a challenge in implementation, in the form of data governance, algorithmic transparency, and change management in organizations (Eboigbe et al., 2023).

Applications of machine learning in asset pricing, supply chain optimization, and customer relationship management have shown significant business value, but findings on the overall effects on organizational performance are scattered across the application contexts (Gu et al., 2020). Future studies ought to focus on understanding how machine learning capabilities can be incorporated into several organizational functions to generate enterprise-wide performance gains (Gu et al., 2020).

Sustainability and Stakeholder Value Creation

The concept of sustainable competitive advantage is becoming more reliant on the capacity of organizations to generate multi-stakeholder value that includes elements of environmental responsibility, social benefit, and quality of governance in addition to financial results (Bari et al., 2022). Sustainability-oriented dynamic capabilities (facilitating the redesigning of resources in line with environmental and social goals) are a new strategic frontier (Bari et al., 2022).

Green innovation, sustainability-related changes, and stakeholder-focused systems generate sustainable organizational value in a variety of ways (Bari et al., 2022). Companies that are able to develop sustainable dynamic capabilities in a successful manner gain competitive advantages that are difficult to replicate and produce positive social and environmental externalities (Bari et al., 2022).

Ecosystem and Platform Innovation

In business ecosystems, where complementarity and modularity (as opposed to hierarchical control) are generated by interdependent organizations coordinating around platform architectures, value is created (Jacobides et al., 2018). Ecosystem innovation is in stark contrast to organizational innovation as it needs abilities that facilitate coordination across organizational boundaries, rules as governance, and value co-creation (Jacobides et al., 2018).

Companies that have done well by implementing ecosystem strategies gain performance advantages by having access to wider sources of innovations, specialized competencies, and market access (Stam and Ven, 2019). The fact that high-growth firms are dominant in areas that have high entrepreneurial ecosystems implies that ecosystem development is a key competitive advantage variable (Stam and Ven, 2019).

Organizational resilience and adaptive capacity denote the capacity to fulfill organizational objectives despite a crisis or other challenging events (Chen et al., 2014).

Digital transformation both expands the ability of an organization to be resilient and introduces new risks in the area of cyber intrusion and technological outage (Browder et al., 2023). Companies that have strategically considered digital transformation as a resilience-enabling competency realize high performance due to the higher adaptive capacity and effectiveness in crisis response (Browder et al., 2023).

Organizational ambidexterity, the capacity to pursue efficiency and innovation at the same time, turns out to be more important to stay ahead of the competition in the environment that can be defined as the one with the constant improvement need and the disruption pressure of innovation (Clau et al., 2020). Organizations that have steady and balanced exploration and exploitation based on the right organizational structures and governance systems perform better in the long-term than those that may focus either on efficiency or innovation (Clau et al., 2020).

Implementation Implications and Strategic Recommendations

Organizational Design and Capability Development

The focus of organizations aiming to use business insight and innovation to enhance performance should be on the development of both integrated organizational capabilities in terms of data analytics infrastructure, human capital development, and organization learning systems (Ramadan et al., 2020). Investments in data quality management and analytics talent are preconditions of producing credible business insights and transforming the insights into innovation initiatives (Al-Okaily et al., 2023).

The investments of strategic capability are to be aligned with the industry situation and competitive positioning. The manufacturing companies are to focus on process innovation and the adoption of Industry 4.0 technology, whereas service organizations are to focus on the customer-centric innovation and management of organizational knowledge (Tassabehji et al., 2019; Tun et al., 2016). Small businesses need to invest in innovation in particular areas of the market and strength in which focused excellence will generate a competitive edge, whereas bigger organizations can use resource diversity and economies of scale to support wider innovation portfolios (Farooq et al., 2021).

Strategy Implementation and Change Management

To implement innovation successfully, the management of various organizational dimensions such as the clarity of the strategy, organizational structure, leadership commitment, and engagement of employees should be coordinated (Brunetti et al., 2020). Organizations that have undertaken digital transformation must organize activities in that order of the cultural and capability building, followed by the implementation of the technological infrastructure, and lastly form ecosystem alliances to maintain the competitive advantage (Brunetti et al., 2020).

The level of process management and strategic alignment are the key success factors that define the possibility of innovative investments to lead to organizational advantages (Vugec et al., 2020). Companies ought to have a structured system to come up with common language, procedures, and communication channels that allow the alignment of technology experts and business executives in the management of both innovation and business intelligence projects (Vugec et al., 2020).

Performance Governance and Monitoring

Organizations ought to develop holistic performance measurement systems that involve both financial and non-financial impacts of innovation in terms of operational efficiency, market performance, and sustainability outcomes (Ashraf et al., 2023). Conducting periodic evaluation of the innovation performance in comparison with strategic objectives allows correcting the course and redistributing resources to facilitate the ongoing improvement (Vugec et al., 2020).

Innovation investment and risk management should be balanced in terms of governance and especially in organizations that are engaging in business model innovation or adoption of emerging technologies (AlNimer et al., 2021). The performance of organizations that integrate systematic risk management with strategic innovation is better than that of those that stress innovation or risk management (AlNimer et al., 2021).

Conclusion

This cohesive overview indicates that business insight and innovation are key drivers of organizational performance in the varied industries and positive connections were evident in the empirical studies that have been conducted in several theoretical views and methodologies. The quality and character of the innovation-performance relations, however, relies heavily on organizational capability, environmental factors, and the quality of implementation. Companies that effectively use business wisdom and innovation do not just make investments in new technologies or innovative practices, but they do so systematically through creating dynamic capabilities that allow them to sense opportunities, exploit innovations and transform organizational resources to sustain competitive advantage.

The main findings throughout the review indicate that: (1) business intelligence and data analytics capabilities positively and directly affect the performance of an organization through a better decision making process and strategic responsiveness (Al-Okaily et al., 2023; Ramadan et al., 2020); (2) innovation proves to have consistent positive performance relationships across industries, but the magnitude of these effects and the mechanisms underlying them can significantly vary depending on the type of innovation and the characteristics of firms and their environment (Farooq et al., 2021; Oduro & Nisco, 2023).

The identified gaps should be addressed in future research: (1) longitudinal analysis of innovation-performance relations over longer times and through multiple business cycles; (2) exploration of organizational learning processes through which innovations can generate sustainable advantages that cannot be easily replicated by competitors; (3) analysis of ecosystem and platform innovation processes that go beyond the boundaries of single organizations; (4) the creation of holistic frameworks that can integrate

business insight capabilities with innovation implementation in the enterprise architecture context; and (5) how new technologies such as artificial intelligence, blockchain, and the Internet of Things provide new sources of innovation and performance

Business insight and innovation integration is a growing core organizational competence in competitive markets whereby technology disruption, customer sophistication, and rapid change are the new realities. Those organizations that manage to create enduring business insight and business insight generation capabilities, as well as translating these insights into innovative products, processes and business models, place themselves in a position to attain sustainable competitive advantage and high-quality organizational performance over long durations.

References

Al-Okaily, A., Teoh, A., & Al-Okaily, M. (2023). Evaluation of data analytics-oriented business intelligence technology effectiveness: An enterprise-level analysis. *Business Process Management Journal*, 29(7), 1–20. <https://doi.org/10.1108/bpmj-10-2022-0546>

AlNimer, M., Abbadi, S. S., AlOmush, A., & Ahmad, H. (2021). Risk management practices and firm performance with a mediating role of business model innovation: Observations from Jordan. *Journal of Risk and Financial Management*, 14(3), 113. <https://doi.org/10.3390/jrfm14030113>

Andreeva, T., & Ritala, P. (2016). What are the sources of capability dynamism? Reconceptualizing dynamic capabilities from the perspective of organizational change. *British Journal of Management*, 27(2), 231–244. <https://doi.org/10.1108/bjm-02-2015-0049>

Arokodare, M. A., & Asikhia, O. U. (2020). Strategic agility: Achieving superior organizational performance through strategic foresight. *Global Journal of Management and Business Research*, 20(3), 7–25. <https://doi.org/10.34257/gjmbavol20is3pg7>

Ashraf, S., Sadiq, M., Ferreira, P., & Almeida, A. M. (2023). Intellectual capital and a firm's sustainable performance and growth before and during the COVID-19 crisis: A comparative analysis of small and large European hospitality firms. *Sustainability*, 15(12), 9743. <https://doi.org/10.3390/su15129743>

Aurangzeb, D., & Asif, M. (2021). Role of leadership in digital transformation: A case of Pakistani SMEs. In *Fourth International Conference on Emerging Trends in Engineering, Management and Sciences (ICETEMS-2021)*(4 (1), 219-229).

Bari, N., Chimhundu, R., & Chan, K. (2022). Dynamic capabilities to achieve corporate sustainability: A roadmap to sustained competitive advantage. *Sustainability*, 14(3), 1531. <https://doi.org/10.3390/su14031531>

Begum, S., Xia, E., Ali, F., Awan, U., & Ashfaq, M. (2021). Achieving green product and process innovation through green leadership and creative engagement in manufacturing. *Journal of Manufacturing Technology Management*, 32(1), 1–25. <https://doi.org/10.1108/jmtm-01-2021-0003>

Berraies, S., & Hamouda, M. (2018). Customer empowerment and firms performance. *International Journal of Bank Marketing*, 36(1), 2–20. <https://doi.org/10.1108/ijbm-10-2016-0150>

Beugelsdijk, S., Kostova, T., Kunst, V. E., Spadafora, E., & van Essen, M. (2017). Cultural distance and firm internationalization: A meta-analytical review and theoretical implications. *Journal of Management*, 43(1), 89–126. <https://doi.org/10.1177/0149206317729027>

Bhattacharyya, S. S., & Thakre, S. (2021). Coronavirus pandemic and economic lockdown; study of strategic initiatives and tactical responses of firms. *International Journal of Organizational Analysis*, 29(2), 369–396. <https://doi.org/10.1108/ijo-05-2020-2198>

Bhömer, N., & Schinnenburg, H. (2023). Critical exploration of AI-driven HRM to build up organizational capabilities. *Employee Relations*, 45(4), 902–921. <https://doi.org/10.1108/er-04-2022-0202>

Bouwman, H., Nikou, S., Molina-Castillo, F. J., & de Reuver, M. (2018). The impact of digitalization on business models. *Digital Policy, Regulation and Governance*, 20(2), 105–124. <https://doi.org/10.1108/dprg-07-2017-0039>

Browder, R. E., Dwyer, S. M., & Koch, H. (2023). Upgrading adaptation: How digital transformation promotes organizational resilience. *Strategic Entrepreneurship Journal*, 17(4), 553–577. <https://doi.org/10.1002/sej.1483>

Brunetti, F., Matt, D. T., Bonfanti, A., De Longhi, A., Pedrini, G., & Orzes, G. (2020). Digital transformation challenges: Strategies emerging from a multi-stakeholder approach. *The TQM Journal*, 32(1), 61–84. <https://doi.org/10.1108/tqm-12-2019-0309>

Caputo, M., Lamberti, E., Cammarano, A., & Michelino, F. (2016). Exploring the impact of open innovation on firm performances. *Management Decision*, 54(7), 1788–1812. <https://doi.org/10.1108/md-02-2015-0052>

Chege, S. M., Wang, D., & Suntu, S. L. (2019). Impact of information technology innovation on firm performance in Kenya. *Information Development*, 35(1), 107–123. <https://doi.org/10.1080/02681102.2019.1573717>

Christensen, H. B., Hail, L., & Leuz, C. (2021). Mandatory CSR and sustainability reporting: Economic analysis and literature review. *Review of Accounting Studies*, 26, 885–931. <https://doi.org/10.1007/s11142-021-09609-5>

Ciacci, A., & Pengo, L. (2023). Business model innovation: Harnessing big data analytics and digital transformation in hostile environments. *Journal of Small Business and Enterprise Development*, 30(7), 1101–1122. <https://doi.org/10.1108/jsbed-10-2022-0424>

Clau, T., Kraus, S., Kallinger, F. L., Bican, P. M., Brem, A., & Kailer, N. (2020). Organizational ambidexterity and competitive advantage: The role of strategic agility in the exploration–exploitation paradox. *Journal of Innovation & Knowledge*, 5(3), 1–11. <https://doi.org/10.1016/j.jik.2020.07.003>

Clauss, T., Abebe, M. A., Tangpong, C., & Hock, M. (2019). Strategic agility, business model innovation, and firm performance: An empirical investigation. *IEEE Transactions on Engineering Management*, 66(4), 500–515. <https://doi.org/10.1109/TEM.2019.2910381>

Collins, C. J. (2020). Expanding the resource based view model of strategic human resource management. *Human Resource Management Review*, 31(3), Article 100782. <https://doi.org/10.1080/09585192.2019.1711442>

De Bruyn, A., Viswanathan, V., Beh, Y. S., Brock, J. K.-U., & von Wangenheim, F. (2020). Artificial intelligence and marketing: Pitfalls and opportunities. *Journal of Interactive Marketing*, 51, 91–105. <https://doi.org/10.1016/j.intmar.2020.04.007>

Dekoulou, P., & Trivellas, P. (2017). Organizational structure, innovation performance and customer relationship value in the Greek advertising and media industry. *Journal of Business & Industrial Marketing*, 32(3), 385–408. <https://doi.org/10.1108/jbim-07-2015-0135>

Eboigbe, E. O., Farayola, O. A., Olatoye, F. O., Nnabugwu, O. C., & Daraojimba, C. (2023). Business intelligence transformation through AI and data analytics. *European Science Journal of Technology*, 4(5), 1–15. <https://doi.org/10.51594/estj.v4i5.616>

Falasca, M., Zhang, J., Conchar, M. P., & Li, L. (2017). The impact of customer knowledge and marketing dynamic capability on innovation performance: An empirical analysis. *Journal of Business & Industrial Marketing*, 32(8), 1029–1044. <https://doi.org/10.1108/jbim-12-2016-0289>

Farooq, R., Vij, S., & Kaur, J. (2021). Innovation orientation and its relationship with business performance: Moderating role of firm size. *Management and Business Review*, 2(1), 1–15. <https://doi.org/10.1108/mbe-08-2020-0117>

Farzaneh, M., Ghasemzadeh, P., Nazari, J. A., & Mehralian, G. (2020). Contributory role of dynamic capabilities in the relationship between organizational learning and innovation performance. *European Journal of Innovation Management*, 23(5), 683–707. <https://doi.org/10.1108/ejim-12-2019-0355>

García-Buendía, N., Moyano-Fuentes, J., Marín, J. M. M., & Avella, L. (2022). The lean supply chain management response to technology uncertainty: Consequences for operational performance and competitiveness. *Journal of Manufacturing Technology Management*, 33(6), 884–905. <https://doi.org/10.1108/jmtm-07-2022-0250>

Gu, S., Kelly, B., & Xiu, D. (2020). Empirical asset pricing via machine learning. *Review of Financial Studies*, 33(5), 2223–2273. <https://doi.org/10.1093/rfs/hhaa009>

Guo, H., Guo, A., & Ma, H. (2022). Inside the black box: How business model innovation contributes to digital start-up performance. *Journal of Innovation & Knowledge*, 7(2), 100188. <https://doi.org/10.1016/j.jik.2022.100188>

Guo, H., Yang, J., & Han, J. (2019). The fit between value proposition innovation and technological innovation in the digital environment: Implications for the performance of startups. *IEEE Transactions on Engineering Management*, 67(2), 1–12. <https://doi.org/10.1109/TEM.2019.2918931>

He, J., & Su, H. (2022). Digital transformation and green innovation of Chinese firms: The moderating role of regulatory pressure and international opportunities. *International Journal of Environmental Research and Public Health*, 19(20), 13321. <https://doi.org/10.3390/ijerph192013321>

Horváth, D., & Szabó, R. Z. (2019). Driving forces and barriers of industry 4.0: Do multinational and small and medium-sized companies have equal opportunities? *Technological Forecasting and Social Change*, 146, 119–132. <https://doi.org/10.1016/j.techfore.2019.05.021>

Iazzolino, G., Bruni, M. E., Veltri, S., Morea, D., & Baldissarro, G. (2023). The impact of ESG factors on financial efficiency: An empirical analysis for the selection of sustainable firm portfolios. *Corporate Social Responsibility and Environmental Management*, 30(2), 1–15. <https://doi.org/10.1002/csr.2463>

Idrees, H., Hynek, J., Xu, J., Akbar, A., & Jabeen, S. (2022). Impact of knowledge management capabilities on new product development performance through mediating role of organizational agility and moderating role of business model innovation. *Frontiers in Psychology*, 13, 950054. <https://doi.org/10.3389/fpsyg.2022.950054>

Ishfaq, U., Imran, A., Joseph, V., Haqdad, U., Ameer, S., & Asif, M. (2022). Mediating role of trust between emotional intelligence and project team performance in telecommunication sector. *PalArch's Journal of Archaeology of Egypt/Egyptology*, 19(4), 988–1005.

Jacobides, M. G., Cennamo, C., & Gawer, A. (2018). Towards a theory of ecosystems. *Strategic Management Journal*, 39(8), 2255–2276. <https://doi.org/10.1002/smj.2904>

Klongthong, W., Thavorn, J., Thanabodypath, W., Dhammathattariya, P., & Chandrachai, A. (2020). The influence of entrepreneurial self-efficacy and innovation on firm performance: Evidence from Thai startup firms. *International Journal of Research in Business and Social Science*, 8(4), 450–463. <https://doi.org/10.18488/journal.73.2020.84.450.463>

Lee, K. L., Azmi, N. A. N., Hanaysha, J. R., Alzoubi, H. M., & Alshurideh, M. T. (2022). The effect of digital supply chain on organizational performance: An empirical study in Malaysia manufacturing industry. *Uncertain Supply Chain Management*, 10(1), 1–10. <https://doi.org/10.5267/j.uscm.2021.12.002>

Li, H. (2022). Green innovation, green dynamic capability, and enterprise performance: Evidence from heavy polluting manufacturing enterprises in China. *Complexity*, 2022, 7755964. <https://doi.org/10.1155/2022/7755964>

Liao, S., Liu, Z., & Zhang, S. (2018). Technology innovation ambidexterity, business model ambidexterity, and firm performance in Chinese high-tech firms. *Asian Journal of Technology Innovation*, 26(2), 151–170. <https://doi.org/10.1080/19761597.2018.1549954>

Lim, W. M. (2022). Ushering a new era of global business and organizational excellence: Taking a leaf out of recent trends in the new normal. *Journal of Global Business and Organizational Excellence*, 41(4), 50–65. <https://doi.org/10.1002/joe.22163>

Liu, C. (2023). Green innovation, firm performance, and risk mitigation: Evidence from the USA. *Environment, Development and Sustainability*, 25, 12751–12769. <https://doi.org/10.1007/s10668-023-03632-z>

Lozano, C. P., & Collazzo, P. (2021). Corporate social responsibility, green innovation and competitiveness causality in manufacturing. *Corporate Review*, 12(6), 1–20. <https://doi.org/10.1108/cr-12-2020-0160>

Mazur, J., & Zaborek, P. (2016). Organizational culture and open innovation performance in small and medium-sized enterprises (SMEs) in Poland. *International Journal of Management and Economics*, 52(1), 1–20. <https://doi.org/10.1515/ijme-2016-0022>

Mazzucchelli, A., Chierici, R., Del Giudice, M., & Bua, I. (2022). Do circular economy practices affect corporate performance? Evidence from Italian large-sized manufacturing firms. *Corporate Social Responsibility and Environmental Management*, 29(5), 1402–1416. <https://doi.org/10.1002/csr.2298>

Momayez, A., Rasouli, N., Alimohammadirokni, M., & Rasoolimanesh, M. (2023). Green entrepreneurship orientation, green innovation and hotel performance: The moderating role of managerial environmental concern. *Journal of Hospitality and Tourism Management*, 55, 1–12. <https://doi.org/10.1080/19368623.2023.2225495>

Moradi, E., Jafari, S. M., Doorbush, Z. M., & Mirzaei, A. (2021). Impact of organizational inertia on business model innovation, open innovation and corporate performance. *Asia Pacific Management Review*, 26(1), 1–14. <https://doi.org/10.1016/j.apmrv.2021.01.003>

Moustaghfir, K., Fatih, S. E., & Benouarrek, M. (2020). Human resource management practices, entrepreneurial orientation and firm performance: What is the link? *Management and Business Review*, 2(1), 1–20. <https://doi.org/10.1108/mbe-12-2019-0119>

Müller, J. M., Kiel, D., & Voigt, K. (2018). What drives the implementation of industry 4.0? The role of opportunities and challenges in the context of sustainability. *Sustainability*, 10(1), 247. <https://doi.org/10.3390/su10010247>

Mumtaz, A., Munir, N., Mumtaz, R., Farooq, M., & Asif, M. (2023). Impact of psychological and economic factors on investment decision-making in Pakistan Stock Exchange. *Journal of Positive School Psychology*, 7(4), 130–135.

Nayak, B., Bhattacharyya, S. S., & Krishnamoorthy, B. (2022). Integrating the dialectic perspectives of resource-based view and industrial organization theory for competitive advantage: A review and research agenda. *Journal of Business-to-Business Marketing*, 29(2), 1–22. <https://doi.org/10.1108/jbim-06-2021-0306>

Oduro, S., & De Nisco, A. (2023). From industry 4.0 adoption to innovation ambidexterity to firm performance: A MASEM analysis. *European Journal of Innovation Management*, 26(5), 1–30. <https://doi.org/10.1108/ejim-02-2023-0106>

Pasha, M. A., Ramzan, M., & Asif, M. (2019). Impact of Economic Value Added Dynamics on Stock Prices Fact or Fallacy: New Evidence from Nested Panel Analysis. *Global Social Sciences Review*, 4(3), 135–147. [http://dx.doi.org/10.31703/gssr.2019\(IV-III\).13](http://dx.doi.org/10.31703/gssr.2019(IV-III).13)

Phan, A. (2019). Does organizational innovation always lead to better performance? A study of firms in Vietnam. *Journal of Economics and Development*, 21(2), 1–15. <https://doi.org/10.1108/jed-06-2019-0003>

Pisano, G. P. (2017). Toward a prescriptive theory of dynamic capabilities: Connecting strategic choice, learning, and competition. *Industrial and Corporate Change*, 26(5), 747–762. <https://doi.org/10.1093/icc/dtx026>

Puriwat, W., & Hoonsopon, D. (2021). Cultivating product innovation performance through creativity: The impact of organizational agility and flexibility under technological turbulence. *Journal of Manufacturing Technology Management*, 32(3), 1–20. <https://doi.org/10.1108/jmtm-10-2020-0420>

Ramadan, M., Shuqqo, H., Qtaishat, L., Asmar, H., & Salah, B. (2020). Sustainable competitive advantage driven by big data analytics and innovation. *Applied Sciences*, 10(19), 6784. <https://doi.org/10.3390/app10196784>

RR, A., W, A., M, A., ZA, C., F, A., & V, P. (2023). The role of green innovation on environmental and organizational performance: Moderation of human resource practices and management commitment. *Heliyon*, 9(1), e12679. <https://doi.org/10.1016/j.heliyon.2022.e12679>

Singh, A., Lim, W. M., Jha, S., Kumar, S., & Ciasullo, M. V. (2023). The state of the art of strategic leadership. *Journal of Business Research*, 156, 113676. <https://doi.org/10.1016/j.jbusres.2023.113676>

Singh, J., Singh, H., & Kumar, A. (2020). Impact of lean practices on organizational sustainability through green supply chain management: An empirical investigation. *International Journal of Lean Six Sigma*, 11(4), 1–20. <https://doi.org/10.1108/ijlss-06-2017-0068>

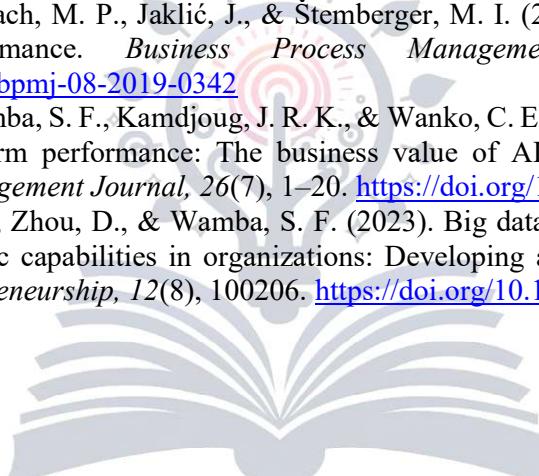
Stam, E., & Van de Ven, A. (2019). Entrepreneurial ecosystem elements. *Small Business Economics*, 56, 809–832. <https://doi.org/10.1007/s11187-019-00270-6>

Tassabehji, R., Mishra, J., & Dominguez, C. (2019). Knowledge sharing for innovation performance improvement in micro/SMEs: An insight from the creative sector. *Production Planning & Control*, 30(9), 1–12.

Torres, A. I., Ferraz, S. S., & Santos-Rodrigues, H. (2018). The impact of knowledge management factors in organizational sustainable competitive advantage. *Journal of Intellectual Capital*, 19(1), 58–84. <https://doi.org/10.1108/jic-12-2016-0143>

Tsai, W.-Y., & Su, C.-J. (2022). Digital transformation of business model innovation. *Frontiers in Psychology*, 13, 1017750. <https://doi.org/10.3389/fpsyg.2022.1017750>

Tun, N. P., Nhan, N. T., Giang, P. T., & Nguyen, N. N. (2016). The effects of innovation on firm performance of supporting industries in Hanoi, Vietnam. *Journal of Industrial Engineering and Management*, 9(3), 1–15. <https://doi.org/10.3926/jiem.1564>


Turulja, L., & Bajgorić, N. (2018). Innovation, firms performance and environmental turbulence: Is there a moderator or mediator? *European Journal of Innovation Management*, 21(3), 1–20. <https://doi.org/10.1108/ejim-03-2018-0064>

Valkov, K., Nagy, M., Zbojník, S., & Lazároiu, G. (2022). Industry 4.0 wireless networks and cyber-physical smart manufacturing systems as accelerators of value-added growth in Slovak exports. *Mathematics*, 10(14), 2452. <https://doi.org/10.3390/math10142452>

Vugec, D. S., Vukić, V. B., Bach, M. P., Jaklić, J., & Štemberger, M. I. (2020). Business intelligence and organizational performance. *Business Process Management Journal*, 26(6), 1–20. <https://doi.org/10.1108/bpmj-08-2019-0342>

Wamba-Taguimdje, S.-L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: The business value of AI-based transformation projects. *Business Process Management Journal*, 26(7), 1–20. <https://doi.org/10.1108/bpmj-10-2019-0411>

Yoshikuni, A. C., Dwivedi, R., Zhou, D., & Wamba, S. F. (2023). Big data and business analytics enabled innovation and dynamic capabilities in organizations: Developing and validating scale. *Journal of Innovation and Entrepreneurship*, 12(8), 100206. <https://doi.org/10.1016/j.jjimei.2023.100206>

