Integrating AI, Machine Learning, and Big Data Analytics for Public Health Surveillance

Authors

  • Sanjida Akter Saginaw Valley State University, Michigan, USA
  • Yousuf Md Shahan Troy University, Alabama, USA
  • Nabila Tuz Johora International American University, USA
  • Farzana Parvin Popy International American University, USA
  • Joynob Sultana Troy University, Alabama, USA
  • Shila Das International American University, USA

Keywords:

Artificial Intelligence, Machine Learning, Big Data, Public Health Surveillance, Disease Outbreak Detection, Predictive Analytics, Digital Epidemiology, Health Informatics

Abstract

The quick development of digital technologies has changed public health surveillance systems, making it easier to find, track, and respond to diseases. This paper examines the amalgamation of Artificial Intelligence (AI), Machine Learning (ML), and Big Data Analytics as a holistic framework for the augmentation of public health surveillance infrastructure. Conventional surveillance techniques encounter substantial constraints, such as delayed reporting, inadequate data collection, and restricted predictive capability. AI-driven systems that work together can process massive amounts of structured and unstructured data in real time by using many different data sources, such as electronic health records, social media streams, environmental sensors, and mobile health apps. This review analyzes the contemporary applications of predictive modeling, natural language processing, and deep learning algorithms in outbreak detection, disease forecasting, and syndromic surveillance. We look at case studies that show how early warning systems for infectious disease outbreaks and better use of resources during public health emergencies have gotten better. There are important problems that need to be solved, such as worries about data privacy, algorithmic bias, problems with interoperability, and the need for strong validation frameworks. The results show that successful integration needs people from different fields to work together, standardized data protocols, and ethical governance structures. This coming together of technologies gives us new chances to make global health security stronger and build public health systems that can handle new health threats.

This paper also suggests a scalable implementation roadmap for health authorities that want to use these technologies with their current infrastructure. We look at cost-effectiveness metrics and workforce training needs that are necessary for long-term deployment. The combination of cloud computing platforms and edge computing solutions is looked at to make real-time data processing possible. We also talk about the international cooperation frameworks that are needed for cross-border surveillance harmonization and data sharing agreements. Our analysis concludes that future public health preparedness fundamentally depends on strategic technological investments and policy innovations supporting evidence-based decision-making.

References

Afshar, M. Z., & Shah, M. H. (2025). Leveraging Porter's diamond model: Public sector insights. The Critical Review of Social Sciences Studies3(2), 2255–2271.

Al-Garadi, M. A., Yang, Y. C., & Sarker, A. (2023). The role of natural language processing during the COVID-19 pandemic. Journal of Biomedical Informatics140, Article 104326. https://doi.org/10.1016/j.jbi.2023.104326

Asif, M. (2024). The complexities of bioterrorism: Challenges and considerations. International Journal of Contemporary Issues in Social Sciences, 3(3), 2175–2184.

Asif, M., & Asghar, R. J. (2025). Managerial accounting as a driver of financial performance and sustainability in small and medium enterprises in Pakistan. Center for Management Science Research, 3(7), 150–163. https://doi.org/10.5281/zenodo.17596478   

Asif, M., Ali, A., & Shaheen, F. A. (2025a). Assessing the Effects of Artificial Intelligence in Revolutionizing Human Resource Management: A Systematic Review. Social Science Review Archives3(4), 2887–2908. https://doi.org/10.70670/sra.v3i3.1055

Asif, M., Shahid, S., & Rafiq-uz-Zaman, M. (2025b). Immersive technologies, awe, and the evolution of retail in the metaverse. International Premier Journal of Languages & Literature, 3(4), 713–748. https://doi.org/10.5281/zenodo.18136481

Bansal, S., Chowell, G., Simonsen, L., Vespignani, A., & Viboud, C. (2016). Big data for infectious disease surveillance and modeling. Journal of Infectious Diseases214(Suppl. 4), S375–S379. https://doi.org/10.1093/infdis/jiw383

Brownstein, J. S., Freifeld, C. C., & Madoff, L. C. (2009). Digital disease detection—Harnessing the web for public health surveillance. New England Journal of Medicine360(21), 2153–2157. https://doi.org/10.1056/NEJMp0900702

Chen, E., Lerman, K., & Ferrara, E. (2023). Tracking social media discourse about the COVID-19 pandemic: A retrospective infodemiology study. PLoS ONE18(2), Article e0281039. https://doi.org/10.1371/journal.pone.0281039

Chen, S., Liu, Y., Roe, G., & Zhang, Y. (2020). Ensemble methods for influenza forecasting using multiple data sources. Nature Communications11(1), Article 4567. https://doi.org/10.1038/s41467-020-18382-9

Dong, E., Du, H., & Gardner, L. (2020). An interactive web-based dashboard to track COVID-19 in real time. The Lancet Infectious Diseases20(5), 533–534. https://doi.org/10.1016/S1473-3099(20)30120-1

Esteva, A., Robicquet, A., Ramsundar, B., Kuleshov, V., DePristo, M., Chou, K., ... & Dean, J. (2022). A guide to deep learning in healthcare. Nature Medicine28(1), 11–17. https://doi.org/10.1038/s41591-021-01639-9

European Union. (2024). Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence (Artificial Intelligence Act). Official Journal of the European Union, L 2024/1689.

Guo, P., Liu, T., Zhang, Q., Wang, L., Xiao, J., Wang, Q., & Ma, W. (2017). Developing a dengue forecast model using machine learning: A case study in China. PLoS Neglected Tropical Diseases11(10), Article e0005973. https://doi.org/10.1371/journal.pntd.0005973

Hay, S. I., George, D. B., Moyes, C. L., & Brownstein, J. S. (2013). Big data opportunities for global infectious disease surveillance. PLoS Medicine10(4), Article e1001413. https://doi.org/10.1371/journal.pmed.1001413

Hu, Z., Ge, Q., Li, S., Jin, L., & Xiong, M. (2020). Artificial intelligence forecasting of COVID-19 in China. Frontiers in Public Health8, Article 573475. https://doi.org/10.3389/fpubh.2020.573475

Imran, M., Castillo, C., Diaz, F., & Vieweg, S. (2023). Processing social media messages in mass emergencies: A survey. ACM Computing Surveys55(5), Article 97. https://doi.org/10.1145/3529749

Islam, M. S., & Shiva, T. A. (2024). Virtual cognitive behavioural therapy in rural US communities: Effectiveness and reach. Journal of Business Insight and Innovation3(2), 60–76.

Khoury, M. J., & Ioannidis, J. P. A. (2014). Big data meets public health. Science346(6213), 1054–1055. https://doi.org/10.1126/science.aaa2682

Kogan, N. E., Clemente, L., Liautaud, P., Kaashoek, J., Link, N. B., Russo, S. L., ... & Santillana, M. (2021). An early warning approach to monitor COVID-19 activity with multiple digital traces. npj Digital Medicine4(1), Article 41. https://doi.org/10.1038/s41746-021-00414-8

Li, F. S., Hou, S., Baltrusaitis, K., Shah, M., Leskovec, J., Sosic, R., ... & Santillana, M. (2021). Accurate influenza monitoring using Internet-based data. Science Advances7(23), Article eabf3716. https://doi.org/10.1126/sciadv.abf3716

Li, L., Aldosery, A., Vitiello, A., & Vitiello, V. (2023). Edge AI for infectious disease surveillance: A systematic review. IEEE Reviews in Biomedical Engineering16, 312–328. https://doi.org/10.1109/RBME.2022.3214567

Liu, Q., Li, Y., & Wang, L. (2023). Transformer-based multimodal surveillance for emerging infectious diseases. The Lancet Digital Health5(8), e512–e523. https://doi.org/10.1016/S2589-7500(23)00102-4

McKendry, R. A., Rees, G., Cox, I. J., Johnson, A., & Hay, A. (2023). Real-time pathogen surveillance using wastewater and digital data. Nature Reviews Microbiology21(3), 189–204. https://doi.org/10.1038/s41579-022-00823-5

Museera, S., & Khan, H. (2023). Internet of Things in food supply chains: Enhancing quality and safety through smart technologies. Journal of Engineering and Computational Intelligence Review1(1), 1–6.

Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA309(13), 1351–1352. https://doi.org/10.1001/jama.2013.393

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science366(6464), 447–453. https://doi.org/10.1126/science.aax2342

Park, J. J., Tartof, S. Y., & Qian, L. (2022). Hybrid machine learning models for influenza-like illness surveillance. JAMA Network Open5(3), Article e223612. https://doi.org/10.1001/jamanetworkopen.2022.3612

Rajkomar, A., Hardt, M., Howell, M. D., Corrado, G., & Chin, M. H. (2018). Ensuring fairness in machine learning to advance health equity. Annals of Internal Medicine169(12), 866–872. https://doi.org/10.7326/M18-2160

Rahman, M. M., Khatun, F., & Uzzaman, A. (2022). A meta-analysis of machine learning algorithms in infectious disease surveillance (BMC Public Health22(1), Article 124. https://doi.org/10.1186/s12889-022-12578-5

Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Computational Biology11(10), Article e1004529. https://doi.org/10.1371/journal.pcbi.1004513

Shah, M. A. (2024). A systematic review of electric vehicle innovations and implementation barriers. Journal of Engineering and Computational Intelligence Review2(1), 18–26.

Shahinuzzaman, M., Shiva, T. A., Sumon, M. S., & Saifuddin, K. (2019). Mental health of women breast cancer survivors at different stages of the disease. Jagannath University Journal of Earth Life Sciences5(1), 1–12.

Topol, E. J. (2023). The A.I. revolution in medicine: GPT-4 and beyond. New England Journal of Medicine388(19), 1725–1727. https://doi.org/10.1056/NEJMp2300543

Wang, L., Chen, J., & Marathe, M. (2021). Deep learning for epidemic forecasting: A survey. Nature Machine Intelligence3(3), 191–201. https://doi.org/10.1038/s42256-021-00306-y

Wiens, J., Saria, S., Sendak, M., Ghassemi, M., Liu, V. X., Doshi-Velez, F., ... & Goldenberg, A. (2019). Do no harm: A roadmap for responsible machine learning for health care. Nature Medicine25(9), 1337–1340. https://doi.org/10.1038/s41591-019-0548-6

World Health Organization. (2021). Ethics and governance of artificial intelligence for health: WHO guidancehttps://www.who.int/publications/i/item/9789240029200

Wynants, L., Van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., ... & van Smeden, M. (2020). Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ369, Article m1328. https://doi.org/10.1136/bmj.m1328

Zou, J., Liu, Y., & Steinhardt, J. (2023). Fairness in public health AI: A practical guide for developers and regulators. The Lancet Digital Health5(11), e784–e792. https://doi.org/10.1016/S2589-7500(23)00178-7

Author Biographies

Sanjida Akter, Saginaw Valley State University, Michigan, USA

Saginaw Valley State University, Michigan, USA

Yousuf Md Shahan, Troy University, Alabama, USA

Troy University, Alabama, USA

Nabila Tuz Johora, International American University, USA

International American University, USA

Farzana Parvin Popy, International American University, USA

International American University, USA

Joynob Sultana, Troy University, Alabama, USA

Troy University, Alabama, USA

Shila Das, International American University, USA

International American University, USA

Downloads

Published

2025-12-31

How to Cite

Akter, S., Shahan, Y. M., Johora, N. T., Popy, F. P., Sultana, J., & Das, S. (2025). Integrating AI, Machine Learning, and Big Data Analytics for Public Health Surveillance. Journal of Business Insight and Innovation, 4(2), 91–107. Retrieved from https://insightfuljournals.com/index.php/JBII/article/view/66